Comprehensive Score: Towards Efficient Local Search for SAT with Long Clauses

نویسندگان

  • Shaowei Cai
  • Kaile Su
چکیده

It is widely acknowledged that stochastic local search (SLS) algorithms can efficiently find models of satisfiable formulae for the Boolean Satisfiability (SAT) problem. There has been much interest in studying SLS algorithms on random k-SAT instances. Compared to random 3-SAT instances which have special statistical properties rendering them easy to solve, random k-SAT instances with long clauses are similar to structured ones and remain very difficult. This paper is devoted to efficient SLS algorithms for random k-SAT instances with long clauses. By combining a novel variable property subscore with the commonly used property score, we design a scoring function named comprehensive score, which is utilized to develop a new SLS algorithm called CScoreSAT. The experiments show that CScoreSAT outperforms state-ofthe-art SLS solvers, including the winners of recent SAT competitions, by one to two orders of magnitudes on large random 5-SAT and 7-SAT instances. In addition, CScoreSAT significantly outperforms its competitors on random k-SAT instances for each k = 4, 5, 6, 7 from SAT Challenge 2012, which indicates its robustness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scoring Functions Based on Second Level Score for k-SAT with Long Clauses

It is widely acknowledged that stochastic local search (SLS) algorithms can efficiently find models for satisfiable instances of the satisfiability (SAT) problem, especially for random k-SAT instances. However, compared to random 3-SAT instances where SLS algorithms have shown great success, random k-SAT instances with long clauses remain very difficult. Recently, the notion of second level sco...

متن کامل

Boosting SAT Solver Performance via a New Hybrid Approach

Due to the widespread demands for efficient SAT solvers in Electronic Design Automation applications, methods to boost the performance of the SAT solver are highly desired. We propose a Hybrid Solution to boost SAT solver performance in this paper, via an integration of local and DPLL-based search approaches. A local search is used to identify a subset of clauses from the original formula to be...

متن کامل

Random Walk with Continuously Smoothed Variable Weights

Many current local search algorithms for SAT fall into one of two classes. Random walk algorithms such as Walksat/SKC, Novelty+ and HWSAT are very successful but can be trapped for long periods in deep local minima. Clause weighting algorithms such as DLM, GLS, ESG and SAPS are good at escaping local minima but require expensive smoothing phases in which all weights are updated. We show that Wa...

متن کامل

Systematic versus Local Search and GA Techniques for Incremental SAT

Propositional satisfiability (SAT) problem is fundamental to the theory of NP-completeness. Indeed, using the concept of ”polynomial-time reducibility” all NP-complete problems can be polynomially reduced to SAT. Thus, any new technique for satisfiability problems will lead to general approaches for thousands of hard combinatorial problems. In this paper, we introduce the incremental propositio...

متن کامل

Reactive search for MAX-SAT: diversification-bias properties with prohibitions and penalties

Many incomplete approaches for SAT and MAX-SAT have been proposed in the last years. The objective of this investigation is not so much horse-racing (beating the competition on selected benchmarks) but understanding the qualitative differences between the various approaches by analyzing simplified versions thereof. In particular, we focus on reactive search schemes where task-dependent and loca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013